PART 1 – CONTROLLED TEST SETUP

Test case: **CIB W14 Round Robin Test – 2000/2/4**
Document Version 1.2
PART 1 – CONTROLLED TEST SETUP

Case: CIB W14 Round Robin Test – 2000/2/4

User details
Run by: Address:
Date: Phone no:
email:

Fire modelling Software
SMARTFIRE CFX PHOENICS

Version/build number___________
Date of release_________________

Operating System
Windows 95/98/2000 Windows NT Unix Dos

Version/build number___________________

Machine
PC Unix Workstation

CPU: Memory:

Case description
This case arises from the CIB round robin tests* of which subscenario B1 is the case of interest. The fire compartment measured 14.4 m × 7.2 m in plan and 3.53 m in height and contained a doorway of dimensions 2.97 m × 2.13 m. The walls of the compartment were made of aerated concrete blocks (with siporex mortar) with thickness 0.3 m and the following material properties: specific heat 1.05 kJ/kg.K, thermal conductivity 0.12 W/m.K and density 500 kg/m³. The initial air temperature was measured as 20.0 °C.

The fire was located on the floor in the centre of the room. The fire fuel consisted of softwood (Pinea ecelsa) timber cribs nailed into 40mm x 40mm battens. The crib measured 2.4m in length, 2.4 m in width and 1.4 m in height.
Figure 1 – Depiction of fire compartment geometry showing location of fire source.
The heat release rate (\dot{Q}) is given by the following calculation:

$$\dot{Q} = \chi \cdot \Delta H_e \cdot \dot{m}$$

The efficiency factor (χ) and heat of combustion (ΔH_e) were given as $\chi = 0.7$ and ΔH_e is 17.8 MJ/kg for burning wood with a 10% moisture content and the mass loss rate (\dot{m}) (kg/s) for the wood crib is presented in the table below. A maximum heat release rate of approximately 11 MW was produced. It is assumed that the fuel molecule is $\text{CH}_{1.7}\text{O}_{0.83}$.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>0</th>
<th>60</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300</th>
<th>360</th>
<th>420</th>
<th>480</th>
<th>540</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass loss rate (kg/s)</td>
<td>0</td>
<td>0.005</td>
<td>0.004</td>
<td>0.009</td>
<td>0.013</td>
<td>0.014</td>
<td>0.019</td>
<td>0.033</td>
<td>0.052</td>
<td>0.08</td>
<td>0.207</td>
</tr>
</tbody>
</table>

Required Results:

Temperature histories locations (Ta, Tb and Tc) illustrated in Figure 2 which is a plan view of the compartment with the doorway at the right hand side of the compartment. In the vertical direction spot values are needed at 20cm, 50cm, 100cm, 180cm and 250cm below the ceiling. These spot values should be produced at the end of every timestep.
Figure 2 - location of the three thermocouple trees in the fire compartment

CFD set up

1D 2D 3D

Transient | **Steady State**

The case needs to be run for 10 minutes using 5 s timesteps.

Differencing Schemes

Temporal:

| Fully Implicit | Crank-Nicolson | Explicit | Exponential |

Spatial:

| Hybrid | Central Difference | Upwind |

Notes:

Physical Models

Radiation Model *(if not listed please specify in the space provided)*
Notes:

(1) If the fire modelling software does not possess the six-flux model, a discrete transfer model may be used in place of the six-flux model. If the discrete transfer model must be used instead of a six flux model then the discrete model must be made to emulate the behaviour of the six-flux model. This can be achieved by using 6 rays in the coordinate directions. If a radiation mesh needs to be specified, this should be identical to the flow mesh. If this is not possible, then at least the same number of cells in each direction must be specified. The details of the mesh must also be provided with your results.

Parameters

The absorption coefficient (a) assumed the following form:

$$a = 0.315$$

It is assumed there is no scattering so $s = 0.0$.

Turbulence model (if not listed please specify in the space provided)

<table>
<thead>
<tr>
<th>Laminar</th>
<th>k- ε</th>
<th>buoyancy modified k-ε</th>
<th>RNG</th>
</tr>
</thead>
</table>

Notes:

For the first phase validation process the standard k- ε turbulence model with the standard buoyancy modification, $C_3 = 1.0$ (see ε-equation below) must be used with the parameters below.

$$\frac{\partial \rho \varepsilon}{\partial t} + \nabla (\rho U \varepsilon) = \nabla \left(\mu_L + \frac{C_\mu \rho \varepsilon^2}{\sigma_\varepsilon} \right) \nabla \varepsilon = C_1 \frac{\varepsilon}{k} (P + C_3 \max(G,0)) - C_2 \rho \frac{\varepsilon^2}{k}$$

Turbulence Parameters*:

<table>
<thead>
<tr>
<th>C_μ</th>
<th>σ_k</th>
<th>σ_ε</th>
<th>$C_{1\varepsilon}$</th>
<th>$C_{2\varepsilon}$</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>1.0</td>
<td>1.3</td>
<td>1.44</td>
<td>1.92</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*If different parameters are being used please specify in the table above.

Combustion Model (if not listed please specify in the space provided)

<table>
<thead>
<tr>
<th>none</th>
<th>Volumetric heat source</th>
<th>Mixed is burnt</th>
<th>Eddy break</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnussen soot model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combustion Parameters:
For phase-1 testing the Eddy Break up model must be used with the collision mixing model and infinite rate chemistry.

\[S_{mf} = -\frac{\rho}{k} C_R \min\left(m_f, \frac{m_o}{i} \right). \]

where \(S_{mf} \) is the source term for the fuel mass fraction equation,

\(C_R = 4.0 \) (rate constant for collision mixing model),

\(m_f \) is the mass fraction of fuel

\(m_o \) is the mass fraction of oxidant.

i is the amount of oxygen used for combustion every unit fuel, i.e

1kg Fuel + ikg -> (1+i) kg products

<table>
<thead>
<tr>
<th>Compressibility</th>
<th>Incompressible</th>
<th>Boussinesq</th>
<th>Weakly compressible</th>
<th>Fully compressible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressibility Parameters:</td>
<td>External Pressure 1.013e+05 Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buoyancy</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>-9.81m/s in the v-velocity direction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Name</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Viscosity (dynamic)</td>
</tr>
<tr>
<td>Conductivity</td>
</tr>
<tr>
<td>Specific heat capacity</td>
</tr>
</tbody>
</table>

The fuel and combustion products are assumed to have the same physical properties of air for the first phase of validation.

<table>
<thead>
<tr>
<th>Initial Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-VELOCITY</td>
</tr>
<tr>
<td>V-VELOCITY</td>
</tr>
<tr>
<td>W-VELOCITY</td>
</tr>
<tr>
<td>PRESSURE</td>
</tr>
</tbody>
</table>
TEMPERATURE 293.75
KINETIC ENERGY 0.01
DISSIPATION RATE 0.01

Boundary conditions

All walls are assumed to be adiabatic for the first phase of the validation process. In the first phase of validation the walls are perfect reflectors of radiation, i.e. the emissivity of the walls is 0. The default log-law turbulent wall functions should be used.

The doorway measures 2.97 m high × 2.13 m wide and is centrally located in one of the small walls. This wall is constructed as a solid non-conducting obstruction with a thickness 0.3m An extended region for this door is required to ensure that the airflow in the door is correctly modelled.

On the extended region all the boundary patches are fixed pressure (outlet) boundaries set to 0.0 Pa apart from the floor which is an adiabatic floor.

The fire is modelled as a volumetric source of fuel with the same location, position and using the mass fuel rate as the wood crib in the case description.

The fire needs to be modelled as a volumetric source of fuel with the same dimensions as the crib illustrated above using the fuel mass source specified above.

Mesh

The mesh consists of 42775 (i.e. 59 x 25 x 29) computational cells.
Input files

Convergence
All variable residuals should be converged to 0.1%. The mass source tolerance is set to 0.0001.

Runtime

Results files/Archiving:

Document cross-reference:

Comments